
Supplementary Material for
3DVNet: Multi-View Depth Prediction and Volumetric Refinement

1. Outline
Our supplemental materials document contains three

main sections. In Sec. 2, we give additional details of our
evaluation procedure used in the paper. In Sec. 3, we in-
clude additional studies, including additional ablation stud-
ies, a study of robustness to errors in initial depth predic-
tions, and a study on depth vs. disparity filtering in point
cloud fusion multi-view consistency checks. In Sec. 4,
we include additional qualitative reconstruction results. To
avoid creating two enumerated lists of citations, we instead
include citations using the enumeration found in the refer-
ences section of the main paper 1.

2. Evaluation Details
For completeness, we include definitions of our met-

rics and lists of scenes used in our evaluation. We also
detail steps taken to improve competing results. We first
detail steps taken during finetuning of competing methods
on ScanNet. We then detail steps taken in our evalua-
tion pipeline to ensure optimal results for both Atlas and
NeuralRecon.

2.1. Metrics

See Tab. 1 for both 2D depth prediction metrics and 3D
reconstruction metrics. These definitions are identical to
those used by Murez et al. [18]. 2D Depth metrics are cal-
culated for each depth map and then averaged over all depth
maps. 3D reconstruction metrics are calculated per-scene
and then averaged over all scenes.

2.2. Scene Lists

We use two real and one synthetic dataset. All datasets
provide 6-degrees-of-freedom camera poses and 640× 480
RGB images and ground truth depth maps. We list the
scenes used in the comparison experiments in our paper:

• ScanNet [5] (real): all 100 test scenes from the official
test split, i.e., scene0707 00 to scene0806 00

1Alexander Rich, Noah Stier, Pradeep Sen, and Tobias Höllerer.
3DVNet: Multi-view depth prediction and volumetric refinement. In In-
ternational Conference on 3D Vision (3DV), 2021.
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Acc ↓ meanp∈P (minp∗∈P∗ ||p− p∗||)
Comp ↓ meanp∗∈P∗ (minp∈P ||p− p∗||)

Prec ↑ meanp∈P (minp∗∈P∗ ||p− p∗|| < .05)
Rec ↑ meanp∗∈P∗ (minp∈P ||p− p∗|| < .05)

F-score ↑ 2×Prec×Rec
Prec+Rec

Table 1: n is the number of depth pixels, d and d∗ are the
predicted and ground truth depth maps, P and P ∗ are the
predicted and ground truth point clouds. White rows indi-
cate 2D depth metrics, gray rows indicate 3D reconstruction
metrics. Length is measured in meters.

Method Abs-rel Abs-diff δ < 1.25 F-score
every 10 cm 0.086 0.181 0.906 0.458

GT depth 0.084 0.165 0.922 0.541

Table 2: ScanNet test metrics for Fast-MVSNet using two
different finetuning methods. See Sec. 2.3 for details.

• TUM-RGBD [23] (real): fr1/desk, fr1/plant,
fr1/room, fr1/teddy, fr2/desk, fr2/dishes, fr3/cabinet,
fr3/long office household, fr3/structure notexture far,
fr3/structure texture far

• ICL-NUIM [10] (synthetic): living room “lr kt1”, liv-
ing room “lr kt2”, office “of kt1”, office “of kt2”

2.3. Improving Competing Methods Through
Finetuning

To ensure fair comparison, we took steps to optimize the
ScanNet test metrics of methods not pre-trained on Scan-
Net. We note all finetuned networks outperform their pre-
trained counterparts on nearly all ScanNet test metrics. We
outline several choices made during finetuning.

Point-MVSNet and Fast-MVSNet: Both Point-
MVSNet [2] and Fast-MVSNet [32] use a plane sweep cost



Heuristic Abs-rel Abs-diff δ < 1.25 F-score
Düzçeker et al. 0.063 0.099 0.948 0.564

Sun et al. 0.062 0.099 0.948 0.560

Table 3: ScanNet test metrics for NeuralRecon using two
different frame selection heuristics. See Sec. 2.4 for details.

volume constructed using 96 depth hypotheses at test time
and 48 depth hypotheses at training time. At testing time,
we mirror the plane sweep parameters we use in 3DVNet
and uniformly sample depth hypotheses every 5 cm starting
at 50 cm. We do this to account for range differences be-
tween the DTU and ScanNet datasets. We tried two meth-
ods for setting the 48 depth hypotheses during finetuning of
Fast-MVSNet on the ScanNet training set.

First, we tried uniformly sampling 48 depth hypotheses
every 10 cm starting at 50 cm. These parameters result in a
cost volume with the same spatial extent as the cost volume
used during test time. Second, we tried setting the minimum
and maximum depth hypotheses to the minimum and max-
imum valid ground truth depth values and uniformly sam-
pling the remainder. This method results in different depth
hypotheses for each depth map. Note that in both cases,
these plane sweep parameters are only used to finetune the
network, and are not used during inference.

We found finetuning using the second method has a large
positive effect on the F-score at test time. See Tab. 2 for
results from both finetuning methods on the ScanNet test
split. The first method is labelled “every 10 cm,” the sec-
ond is labelled “GT depth.” Following these results, we used
the ground truth depth values to set the depth hypotheses of
PointMVSNet during finetuning.

GPMVS: During finetuning of GPMVS [11], we use
eight images per scene rather than the author-recommended
three images per scene. We observe we report better met-
rics for our finetuned GPMVS model compared to Murez
et al. [18] and Sun et al. [24]. We note the metrics from
Düzçeker et al. [6] are reported using the online version of
GPMVS while we use the batched version. Thus, they can-
not be directly compared.

2.4. Improving Competing Methods Through
Evaluation Choices

We took steps to avoid false penalization of competing
methods in our evaluation pipeline. We first show our mesh
evaluation choices significantly benefit the F-score of Atlas.
Then, we show the frame selection heuristic used in our
evaluation benefits the F-score of NeuralRecon.

Mesh Evaluation: In our evaluation pipeline, we make
the choice to (1) use a single-walled mesh for all methods
following Sun et al. [24] and (2) mask out regions of pre-
dicted reconstructions which are observed in camera frus-
tums but not present in the ground truth reconstruction. See

Figure 1: Diagram of different architectures tested in our
U-Net ablation study. V1, V2, V3 correspond to the three
scales of scene encodings extracted. Tuples indicate in/out
dimensions of convolution layers.

the supplementary material of Sun et al. [24] for a more
detailed description of a single-walled mesh vs. a double-
walled mesh. As originally reported by Murez et al. [18],
using a double-walled mesh results in an F-score of 0.520.
We find using a single-walled mesh (without masking using
the ground truth mesh) results in an F-score of 0.550. With
masking, we report an F-score of 0.573. This confirms both
choices help reduce false penalization.

Frame Selection: In our evaluation, we use the frame
selection heuristic of Düzçeker et al. [6]. This frame se-
lection heuristic is slightly different than the heuristic origi-
nally used by Sun et al. [24] when evaluating NeuralRecon.
To ensure fair comparison with NeuralRecon, we tried both
heuristics on the ScanNet test split. See Tab. 3 for re-
sults. The choice of heuristic has almost no effect on the
depth metrics. While very small, the selection heuristic of
Düzçeker et al. [6] has a slightly positive effect on F-score.
We report NeuralRecon metrics using this heuristic.

3. Additional Studies

We present additional studies performed on the ScanNet
official validation split. See Tab. 4 for results from addi-
tional ablation studies. See Tab. 5 for results from a quan-
titative evaluation of point cloud fusion methods. The abla-
tion study and point cloud fusion study were performed at
different stages in development of our method. They cannot
meaningfully be compared.



Model Abs-rel Abs-diff δ < 1.25 F-score
1 layer 0.049 0.095 0.964 0.603

3 layer CNN 0.046 0.088 0.968 0.623
ss no var 0.052 0.098 0.961 0.604
ms no var 0.048 0.091 0.967 0.608
ss w/ var 0.046 0.088 0.968 0.619

MLP 0.046 0.089 0.969 0.625
no smoothing 0.052 0.097 0.960 0.629

full 0.045 0.085 0.971 0.633

Table 4: Metrics for our ablation study. See Sec. 3.1 for de-
scriptions of each condition. Bold indicates best performing
method.

3.1. Additional Ablation Studies

We include ablation studies for the 3D U-Net architec-
ture, the PointFlow module, and the coarse-to-fine upsam-
pling network. Our full model is denoted “full” in Tab. 4.

U-Net Architecture Ablation: Our 3D U-Net, labelled
“3 layer U-Net” in Fig. 1, follows existing work. In this
study, we evaluate our chosen 3D U-Net architecture. To
do so, we use 2 additional architectures. See Tab. 4 for re-
sults. First, we chose a simple, single resolution architec-
ture consisting of 3 residual convolutions, which we denote
“1 layer” in Tab. 4 and Fig. 1. In this case, the feature for
each hypothesis point in PointFlow is generated using only
V3 and a per-channel-variance feature. Second, we removed
the second half of the 3D U-Net, denoted “3 layer CNN” in
Tab. 4 and Fig. 1. The “1 layer” network does notably worse
in all metrics. The “3 layer CNN” network does slightly
worse in all metrics, with the F-score most affected.

PointFlow Feature Ablation: We evaluate our choice
of input to the PointFlow module. We consider two con-
ditions: (1) using only V3 instead of the full multi-scale
encoding and (2) not including a per-channel-variance fea-
ture. We try all combinations. See Tab. 4 for results. V3

with and without a per-channel-variance feature is denoted
“ss no var” and “ss w/ var” respectively. The full multi-
scale encoding without the per-channel-variance feature is
denoted “ms no var”. All additional features help.

PointFlow 1D CNN: In the original PointFlow, a multi-
layer perceptron (MLP) is applied to each hypothesis point
feature fk(p̃k) to predict a probability scalar associated with
each hypothesis point. In our formulation, we stack our
hypothesis features to form a 2D feature H ∈ R(2h+1)×c,
where c is the channel dimension of feature fk(p̃k). Then,
instead of an MLP, we apply a 4 layer 1D CNN to predict a
probability scalar. We evaluate the effectiveness of this for-
mulation by instead using an MLP to predict a probability
scalar, the equivalent of using a kernel size of 1 in our 1D
CNN. We denote this as “MLP” in Tab. 4. All metrics are
slightly worse under this condition, indicating the effective-
ness of the 1D CNN.

Figure 2: F-score degradation w.r.t. Gaussian noise added to
initial depth predictions. F-score degradation is calculated
using the difference in F-score with and without injected
Gaussian noise. A higher value is better, indicating the re-
sulting reconstructions are less affected by the introduction
of noise. Our method is far more robust to gross errors in
initial depth predictions when compared to Point-MVSNet
and Fast-MVSNet.

Our intuition is as follows. We generate our hypothe-
sis point features by interpolation a sparse grid, using 0s
where features are not defined. Features generated in unde-
fined grid cells therefore tend to 0. Using a 1D CNN allows
the network observe the difference in features between hy-
pothesis points and therefore be conditioned not only on the
point features themselves but also on the rate of change of
the sparse grid. This gives the 1D CNN more information
when generating a probability scalar for a hypothesis point.

Coarse-to-Fine Upsampling Network: We evaluate the
effectiveness of our coarse-to-fine upsampling and smooth-
ing method by instead using nearest-neighbor upsampling
on the output of the scene-modeling and refinement stage
{D(2,3)

n } to produce our final prediction {Dn}. We de-
note this condition as “no smoothing” in Tab. 4. The depth
metrics are heavily affected while the F-score is slightly af-
fected. We explain this as follows. Our smoothing networks
do not change the overall structure of the reconstruction.
Rather, they are designed to remove interpolation artifacts
from depth boundaries. Removing them leaves the majority
of the reconstruction unaffected and therefore has a small
effect on 3D metrics. However, incorrect depth boundaries
result in large errors in the 2D depth metrics. Thus when the
interpolation artifacts are not removed, depth metrics suffer
more than reconstruction metrics.

3.2. Reliance on Initial Depth Maps

Our method predicts residuals to refine a coarse initial
depth prediction. To study the robustness of our method to
gross errors in the initial depth predictions, we follow Chen
et al. [2] and add Gaussian noise of varying scales prior



Method t F-score
PMVS (FT)

depth

0.050 0.526
0.020 0.550
0.010 0.547
0.005 0.529

disp

0.500 0.482
0.250 0.495
0.125 0.486
0.062 0.450

GPMVS (FT)

depth

0.050 0.573
0.020 0.586
0.010 0.579
0.005 0.562

disp

0.750 0.529
0.500 0.532
0.250 0.531
0.125 0.517
0.062 0.486

Ours

depth

0.050 0.590
0.020 0.617
0.010 0.622
0.005 0.618

disp

0.500 0.584
0.250 0.591
0.125 0.592
0.062 0.586

Table 5: Results from our point cloud fusion study
(Sec. 3.3). First column indicates both which network was
used and which method was used for thresholding. Second
column indicates the corresponding threshold t used.

to residual prediction. We compare against the two other
methods that rely on residual prediction, Point-MVSNet
and Fast-MVSNet. We use the finetuned models, which
we denote “PMVS (FT)” and “FMVS (FT)” respectively.
See Fig. 2 for the degradation in F-score as a function of
the standard deviation of the injected Gaussian noise. Our
method outperforms PMVS (FT) and FMVS (FT) by a large
margin, indicating better robustness to errors in initial depth
predictions. Notably, the F-score of our method decreases
between 2 and 3 times less than PMVS (FT) and FMVS
(FT) when adding Gaussian noise with a standard deviation
of 20 cm.

3.3. Depth vs. Disparity Point Cloud Fusion Study

In our evaluation, we use point cloud fusion with a depth-
based multi-view consistency check rather than a disparity-
based check. We briefly review multi-view consistency
checks and outline a study that shows depth-based checks
result in quantitatively better 3D metrics.

The first step in point cloud fusion is to perform a multi-

view consistency check. For a depth map D, given N
other depth maps D1, . . . ,DN , each depth pixel is back-
projected to 3D space and then re-projected to each of the
N other depth maps. For each pixel, this results in a re-
projected depth value zi and a re-projected disparity value
di corresponding to the projection into depth map Di. Ad-
ditionally, the corresponding depth ẑi and disparity d̂i can
be fetched from the depth map in question Di. In the im-
plementation of Galliani et al. [9], a given depth pixel from
D is considered consistent w.r.t. Di if the difference in re-
projected disparity and fetched disparity is less than some
threshold t:

|di − d̂i| < t (1)

Pixels in D are only considered valid if they are 3-view con-
sistent, i.e., there exist three depth maps in {D1, . . . ,DN}
such that Eq. 1 holds.

As disparity is inversely proportional to depth, we ob-
serve for large depth values this is less effective at filtering
incorrectly predicted points. We modify the implementa-
tion of Galliani et al. [9] to threshold using depth instead of
disparity, i.e., a depth pixel is consistent w.r.t. Di if:

|zi − ẑi| < t (2)

We evaluation the effect of Eqs. 1 and 2 using 3DVNet,
finetuned Point-MVSNet, and finetuned GPMVS. For each
method, we run point cloud fusion with (1) depth filtering
(Eq. 2) and t ∈ {5 cm, 2 cm, 1 cm, 5 mm}, and (2) disparity
filtering (Eq. 1) and t ∈ {0.500, 0.250, 0.125, 0.062}. For
GPMVS (FT), we include disparity threshold t = 0.750 to
ensure a more lenient threshold does not result in a better
F-score. See Tab. 5 for results on ScanNet validation split.

We first observe, for every network and for both depth
and disparity thresholding, the maximum F-score does not
occur using the most lenient or strictest threshold t. Rather,
there is a clear peak in F-score as we transition from a le-
nient to strict threshold. Thus we assume we have a reason-
able approximation of the best F-score using both depth and
disparity filtering.

Next we observe, with the exception of 3DVNet, the
worse F-score from using depth thresholding outperforms
the best F-score from using disparity thresholding. For
3DVNet, the worst F-score using depth thresholding is
within 0.002 of the best F-score using disparity threshold-
ing. In all cases, the best F-score using depth thresholding
far outperforms the best F-score using disparity threshold-
ing. Because of this, we use depth thresholding in our quan-
titative evaluation.

4. Additional Qualitative Results
We include additional qualitative reconstruction results.

See Figs. 3 and 4 for point cloud fusion results. Note we
only run point cloud fusion on depth-based methods and



thus omitted them from the qualitative results section of the
paper. See Fig. 5 for reconstructed meshes. For depth-based
methods, we use TSDF fusion followed by marching cubes.
For volumetric methods, we run marching cubes on the out-
put TSDF prediction.

4.1. Analysis of Point Cloud Fusion Results

Our point cloud fusion results display the benefit of us-
ing a unified 3D scene representation for depth residual pre-
diction. PMVS and FMVS both predict residuals but nei-
ther uses a unified 3D scene representation. Their predicted
depth maps therefore disagree on the underlying 3D geom-
etry and a large number of points are filtered during the
multi-view consistency check. This leads to a very sparse
fused point cloud. Meanwhile, DVMVS fusion and GP-
MVS both update deep features to encourage depth maps to
agree. Their results are less sparse, indicating this method
has a positive effect on depth map agreement. However,
their results are still not as complete as ours and tend to
be noisier. In contrast, our fused point clouds are the most
complete and contain the least noise. We believe this is a
result of our volumetric scene encoding and explicit depth
residual prediction. We note DVMVS pair does neither
residual prediction nor deep feature manipulation but still
produces plausible results, indicating a well designed depth-
prediction architecture.

4.2. Analysis of Mesh Results

All reconstructed meshes follow the same trends out-
lined in the paper. The depth-based methods produce lo-
cal detail but tend to be globally incoherent. The walls and
floors tend to contain salient noise artifacts. The volumet-
ric methods produce globally coherent reconstructions but
do not contain local detail. Objects tend to either blend to-
gether or be incomplete. In contrast, our method produces
both globally coherent reconstructions and local detail. Re-
constructed tables, chairs, and shelves tend to contain ac-
curate thin structures, and our walls and floors are coherent
and free of noise artifacts. We believe this is a direct result
of our volumetric scene encoding and iterative refinement.



Figure 3: Point cloud fusion results for all depth-based methods on ScanNet test scenes. Our method produces the most
complete results with the least amount of noise, indicating strong agreement across all depth predictions.



Figure 4: Point cloud fusion results for all depth-based methods on ScanNet test scenes. Our method produces the most
complete results with the least amount of noise, indicating strong agreement across all depth predictions.



Figure 5: Mesh results for all methods on ScanNet test scenes. TSDF fusion was used for depth-based methods. Our method
produces globally coherent reconstructions and local detail.


