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Smoothness, Synthesis, and Sampling: Re-thinking Unsupervised Multi-View Stereo with DIV Loss
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DEPTH RESULTS (DTU)

PROBLEM SETUP & CONTRIBUTION RELAXED 2N°-ORDER DEPTH SMOOTHNESS
Unsupervised MVS: training depth-prediction networks Results: 2"%-order smoothness
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DIV Loss: A novel core unsupervised loss formulation o T ent
depth error after optimization (GT objects in red

e Depth smoothness + Image synthesis + View sampling
e Easily drops into existing unsupervised MVS pipelines Automatically relaxes 2"9-order gradient penalty at large depth boundaries, allowing sharp discontinuities where required

e Improves network performance for minimal additional training cost

IMAGE SYNTHESIS AND VIEW SAMPLING
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MOTIVATION

Experiment: optimized ground-truth depth for multi-view
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Results: previous approach (St-order smoothness)
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QUANTITATIVE RESULTS (DTU)

7 I DTU Ovr. DTU Abs. Depth Error (mm) | Training Memory (GB)
% stair steppin pipeline | without DIV with DIV~ diff | without DIV with DIV  diff | without DIV with DIV diff
PPINS P ; DIV-MVS | 0.361 0330 -0.031| 19.34 1632 -3.02| 10.50 1052 +0.02
)X boundary blurring T ] DIV-RC 0.350 0.333  -0.017 21.76 21.01 -0.75 12.24 1226  +0.02
h DIV-CL 0.330 0.321 -0.009 17.88 15.38 -2.50 11.64 11.70  +0.06
O.0HEE >2mm
depth error illustration of enforced prior e DIV Loss improves network performance in all cases while requiring >0.1GB additional GPU memory during training

after optimization GT objects in red) e DIV-CL achieves SOTA performance on DTU among unsupervised methods, DIV-MVS, DIV-RC rank highly

RC-MVSNet + DIV loss
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POINT CLOUD FUSION RESULTS (T&T)

- F-score: 45.52

CL-MVSNet + DIV loss
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CasMVSNet RC-MVSNet CL-MVSNet DIV-MVS (ours
(fully supervised unsupervised unsupervised) unsupervised

SOTA on T&T among (1) unsupervised methods and (2) all methods which only train on DTU

ABLATION STUDY (DTU)

baseline + smoothness + synthesis + sampling




