Smoothness, Synthesis, and Sampling: Re-thinking Unsupervised Multi-View Stereo with DIV Loss

Alex Rich \diamondsuit Noah Stier \diamondsuit Pradeep Sen \diamondsuit Tobias Höllerer University of California, Santa Barbara

PROBLEM SETUP & CONTRIBUTION

Unsupervised MVS: training depth-prediction networks without access to ground-truth depth

source views

DIV Loss: A novel core unsupervised loss formulation

- Depth smoothness + Image synthesis + View sampling
- Easily drops into existing unsupervised MVS pipelines
- Improves network performance for minimal additional training cost

MOTIVATION

Experiment: optimized ground-truth depth for multi-view consistency using unsupervised loss initialize using

Results: previous approach (1st-order smoothness)

X stair stepping X boundary blurring

>2mm 0.0 depth error after optimization

illustration of enforced prior (GT objects in **red**)

Automatically relaxes 2nd-order gradient penalty at large depth boundaries, allowing sharp discontinuities where required

17.88

QUANTITATIVE RESULTS (DTU)								
		DTU Ovr.↓			DTU Abs. I			
	pipeline	without DIV	with DIV	diff	without DIV			
	DIV-MVS	0.361	0.330	-0.031	19.34			
	DIV-RC	0.350	0.333	-0.017	21.76			

• **DIV Loss** improves network performance in all cases while requiring >0.1GB additional GPU memory during training

0.330

• **DIV-CL** achieves SOTA performance on DTU among unsupervised methods, **DIV-MVS**, **DIV-RC** rank highly

0.321

-0.009

DIV-CL

th Error (1	nm)↓	Training Memory (GB)				
with DIV	diff	without DIV	with DIV	diff		
16.32	-3.02	10.50	10.52	+0.02		
21.01	-0.75	12.24	12.26	+0.02		
15.38	-2.50	11.64	11.70	+0.06		

DEPTH RESULTS (DTU)

POINT CLOUD FUSION RESULTS (T&T)

DIV-CL

DIV-RC

ABLATION STUDY (DTU)