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Unsupervised MVS: training depth-prediction networks 
without access to ground-truth depth

Smoothness, Synthesis, and Sampling: Re-thinking Unsupervised Multi-View Stereo with DIV Loss 
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Experiment: optimized ground-truth depth for multi-view 
consistency using unsupervised loss

DIV Loss: A novel core unsupervised loss formulation
● Depth smoothness + Image synthesis + View sampling
● Easily drops into existing unsupervised MVS pipelines
● Improves network performance for minimal additional training cost
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Results: ours (relaxed 2nd-order smoothness)

✅ smooth surfaces

❌ boundary blurring

❌ stair stepping

❌ boundary blurring

Automatically relaxes 2nd-order gradient penalty at large depth boundaries, allowing sharp discontinuities where required
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● Image Synthesis: Learned approach avoids the use of hand-coded 
heuristics for handling view-dependent effects

● View Sampling: De-coupling the network input views from the supervision 
views challenges the network to predict depth consistent with unseen views
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F-score: 46.26 F-score: 45.52 F-score: 49.93 F-score: 52.58
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F-score: 27.36 F-score: 27.88 F-score: 31.45 F-score: 32.53

SOTA on T&T among (1) unsupervised methods and (2) all methods which only train on DTU
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● DIV Loss improves network performance in all cases while requiring >0.1GB additional GPU memory during training
● DIV-CL achieves SOTA performance on DTU among unsupervised methods, DIV-MVS, DIV-RC rank highly
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